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Abstract

In this paper, we provide a new directional optimization of
a recently developed class of weighted vector directional
filters (WVDFs) that represent a powerful tool for removing
impulsive noise, bit errors and color artifacts in color
images. Depending on the weight coefficients, the WVDFs
can be designed to perform a wide range of smoothing
operations. The proposed optimization process based on
sigmoidal approximation of the sign function and utilizing
local information allows to adapt the WVDF behavior to
statistical properties of both noise and useful signal, saves
the memory space and is easy to implement. The proposed
sigmoidal function based optimal WVDFs find the
application in denoising of standard color images and
digitized old color photos, they are able to remove impulsive
noise and outliers, and provide excellent signal-detail and
color chromaticity preservation.

Introduction

In color image filtering, a class of vector filters [1-6]
respects the inherent correlation that exists between color
channels and thus, vector filters avoid a production of color
artifacts on which the human visual system is very sensitive.
If the noise corruption is characterized by heavy-tailed
distribution (e.g. impulsive noise or bit errors), vector filters
based on robust order-statistic theory and outputting the
sample associated with the minimum distance function are
usually preferred. A new class of weighted vector directional
filters (WVDFs) outputs the input multichannel sample
minimizing the distance function given by the sum of
weighted angles to other input samples. Note that each input
sample is associated with the nonnegative real weight. A
class of WVDFs provides excellent properties such as
design flexibility, simple structure, optimal estimates in the
sense of color chromaticity preservation, and significant
improvement in comparison with standard vector directional
filters. Because of a wide range of smoothing operations
done by WVDFs, an optimization of the weight vector
should be emphasized in the filter design.

The proposed sigmoidal function based optimal
WVDFs find the application in denoising of standard color
images and digitized old color photos, they are able to
remove impulsive noise and outliers, and provide the
excellent signal-detail and color chromaticity preservation.
The excellent performance of the proposed method will be
illustrated in the form of tables and object-lesson images
including error signals, row functions and graphical
dependencies of used mean absolute error, mean square
error and normalized color difference criteria vs. a wide
range of impulsive noise probability. The complete analysis
of the sigmoidal function based optimization will be
provided as well.

Weighted Vector Directional Filters

Let 1 2, ,..., Nx x x  be a set of multichannel vector-valued
samples spawned by a filter window of a finite size N  and
let ( 1) / 2N +x  be a central sample corresponding to the window
reference position. Let us consider that 1 2, ,..., Nw w w
represent a set of positive real weights, where each weight

jw , for 1,2,..., ,j N=  is associated with the input sample .jx
Then, the sum of weighted angular distances [3] associated
with the input sample ix  is given by
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represents the angle [4] between two m -dimensional vectors
1 2( , ,..., )i i i imx x x=x  and 1 2( , ,..., )j j j jmx x x=x . If the

ordering scheme of ordered angular measures

(1) (2) ( )... Nβ β β≤ ≤ ≤ (3)

is implied to the input vector-valued samples
1 1 2 2( ), ( ),..., ( )N Nβ β βx x x , it results in the ordered input set

(1) (2) ( ); ;...; Nx x x (4)
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The output of the WVDF is the sample
(1)

1 2{ , ,..., }N∈x x x x  associated with the minimum weighted
angular distance (1) 1 2{ , ,..., }.Nβ β β β∈  Thus, the WVDFs are
outputting the sample from the input set, so that the local
distortion is minimized [3].

If all weight coefficients are set to the same value, all
angular distances will have the same importance and the
WVDF operation will be equivalent to the well-known basic
vector directional filter (BVDF) [6]. If only the center
weight is altered whereas other weights remain equal to one,
the WVDFs perform the center weighted vector directional
filtering (CWVDF) [3].

Proposed Optimization

A variety of smoothing operations provided by the WVDFs
represent the sufficient motivation for the optimization of
the weight coefficients. In general, the filter optimization
belongs to the most important tasks related to the filter
design. The relationship between the pixel under
consideration (window center) and each pixel in the filter
window should be reflected in the decision for the weight
coefficients. In the adaptive design, the weights provide the
degree to which the input vector contributes to the output of
the filter. In this paper, we determine adaptively the optimal
weight vector using directionally generalized sigmoidal
optimization of the weighted median (WM) filters [7].

Consider the input set of scalar samples written as
1 2{ ( ), ( ),..., ( )}Nx n x n x n  and the original (desired) sample

( )o n  associated with the time position n  determined by the
central sample of a running filter window. In the case of
sigmoidal approximation, the adaptive optimization
algorithm derived from the stack filter design [7] can be
simplified to the following expression

[ ]( 1) ( ) 2 ( ( ) ( ))sgn ( ( ) ( ))i i S iw n P w n o n y n x n y nµ+ = + − − (5)

where ( )iw n , for 1,2,..., ,i N=  is the filter weight, ( )y n  is
the WM output, µ  is the iteration constant, sgn (.)s  is
a sign function approximated by sigmoidal function

2
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and (.)P  characterizes a projection operation

( ) for  ( ) 0
( 1)

0 otherwise
i i

i

w n w n
w n

≥
+ = 


(7)

If the actual WM output is smaller than the original
value, the weights corresponding to the samples that are
larger than the actual output are incremented. However, in
the case of sigmoidal approximation of the sign function, the
convergence to a global optimal solution cannot be
guaranteed [7]. In general, the adaptive WM algorithms such
as the optimization based on sigmoidal approximation and
also linear approximation of the sign function save the
memory space, they are easy to implement and provide good
results for the time-varying statistics.

Now, let 1 2{ ( ), ( ),..., ( )}Nn n nx x x  be the input set of m -
channel samples and ( )no  the desired (original or noise-
free) sample. Let us consider that each input sample ( )i nx
be associated with nonnegative real weight iw , for

1,2,..., .i N=  Then, we can modify the sigmoidal
optimization (5) as its directional generalization for the
multichannel case as follows:

( ) ( )( 1) ( ) 2 ( ), ( ) ( ) ( ) .i iw n P w n A n n S n nµ+ = + − o y o y

( ) ( )( ).sgn ( ), ( ) ( ) ( )S i iA n n S n n − x y x y (8)

where ( )ny  is the WVDF output related to the actual weight
coefficients 1 2( ), ( ),...., ( )Nw n w n w n  and time position .n
Notation ( )i nx  characterizes the input sample with the i -th
position in the filter window and ( ) { 1,1}S ⋅ ∈ −  is a polarity
function.

It is clear that the main difficulty related to the
extension of the scalar expression (5) to the multichannel
case is the modification of the sign function. The reason is
the difficulty of determining the polarity of the distance
measure between two multichannel samples. In order to
solve this problem, we determine the polarity of the distance
measure according to the difference between magnitudes of
multichannel samples. In general, applying the used
transformation to multichannel samples a  and b  results in
the following expression:

1 for  0
(| | | |)

1 for  0
S

+ − >− − − <

a b
a b

a b
(9)

Experimental Results

The used color test images Lena, Peppers and Parrots are
shown in Figure 1a-c. The efficiency of the methods was
evaluated for a wide range of the impulsive noise corruption.
As the objective measures [5] we used mean absolute error
(MAE), mean square error (MSE) and normalized color
difference (NCD). These criteria provide a good mirror of
the signal-detail preservation (MAE), the noise attenuation
capability (MSE) and the measure of the color distortion
(NCD) present in the image, respectively.

The achieved error criteria normalized by the maximum
error values related to the WVDF optimization and a various
degree of the impulsive noise corruption [5] are shown in
Figure 2. Note that the sigmoidal optimization is starting
with the initialization of the weight vector as the vector of
positive values. It can be seen that the success of the
adaptation of the filter weights depends on the iteration
constant µ  that should be optimally set to a value greater
than 0.1. If µ  is smaller than this sub-optimal value, the
sigmoidal WVDF filter provides worse detail preserving
characteristics and after some critical point dependent on
statistical properties of the training sequence, it will
converge to the BVDF operation. Note that the optimization
process of the 3 3×  was started with the same initial weight
vector (0) [1,1,1,1,1,1,1,1,1]=w  that corresponds to the BVDF.
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(a)    (b)        (c)          (d)

(e)    (f)        (g)          (h)

Figure 1.  Achieved results. (a) test image Lena, (b) test image Peppers, (c) test image Parrots,
(d) 5% impulsive noise, (e) VMF output, (f) BVDF output, (g) DDF output , (h) Proposed method
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Figure 2 . WVDF optimization vs. normalized measures in the dependence on the iteration stepsize µ . Training set was given by the
image Lena with no corruption (a) and with impulsive noise: (b) 2% noise, (c) 5% noise, (d) 10% noise, (e) 15% noise, (f) 20% noise

In order to test the robustness of the method, in the
reminder of this paper we used the weight coefficients
related to the training set achieved using by the test image
Lena corrupted by 10% impulsive noise. We compared the
performance of the proposed method with the performance
of widely used vector filtering approaches such as vector
median filter (VMF) [1], basic vector median filter (BVDF)
[6] and directional distance filter (DDF) [2].

It can be seen (Figures 3-7 and Tables 1-6) that the
proposed method can achieve interesting improvement of
the filter performance in comparison with the relevant
filtering techniques such as VMF, BVDF, DDF and non-
optimized WVDF with the weight vector

[1,2,1,4,5,4,1,2,1]=w . In addition, the proposed method is
able to achieve the excellent balance between the noise
attenuation characteristics and signal-detail preservation
characteristics.
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Figure 3.  Row functions (180th row) related to the image Lena: (a) original image, (b) 2% noise, (c) output of the proposed method

Table 1 Achieved results using the image Peppers

Method MAE MSE NCD
2% noise 1.582 197.6 0.0178

VMF 3.011 39.7 0.0428
BVDF 3.585 55.9 0.0418
DDF 3.027 40.7 0.0411

WVDF 1.992 28.7 0.0251
proposed method 1.708 24.6 0.0205

Table 2 Achieved results using the image Parrots

Method MAE MSE NCD
2% noise 1.578 186.2 0.0177

VMF 2.493   58.0 0.0123
BVDF 3.289 101.8 0.0106
DDF 2.482   60.2 0.0108

WVDF 1.879   53.3 0.0058
proposed method 1.433   45.2 0.0043

(a)              (b)

(c)              (d)

Figure 4. Zoomed results obtained using the test image Lena.
(a) original image, (b) noisy image (2% impulsive noise),

(c) VMF output, (d) output of the proposed method

Table 3 Achieved results using the image Peppers

Method MAE MSE NCD
5% noise 3.988 486.1 0.0441

VMF 3.169   43.9 0.0452
BVDF 3.740   60.7 0.0438
DDF 3.182   44.6 0.0431

WVDF 2.197   38.1 0.0275
proposed method 1.876   33.9 0.0227

Table 4 Achieved results using the image Parrots

Method MAE MSE NCD
5% noise 3.805 443.6 0.0432

VMF 2.669   64.2 0.0132
BVDF 3.460 109.0 0.0116
DDF 2.645   65.3 0.0117

WVDF 2.061   62.2 0.0068
proposed method 1.574   50.4 0.0052

(a)              (b)

(c)              (d)

Figure 5. Zoomed results obtained using the test image Parrots.
(a) original image, (b) noisy image (5% impulsive noise),

(c) VMF output, (d) output of the proposed method
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Figure 6. Row functions (100th row) related to the image Peppers: (a) original image, (b) 15% noise, (c) output of the proposed method

Table 5 Achieved results using the image Peppers

Method MAE MSE NCD
10% noise 7.677 943.3 0.0870

VMF 3.503   55.0 0.0494
BVDF 4.151   82.7 0.0484
DDF 3.512   56.6 0.0475

WVDF 2.659   65.9 0.0324
proposed method 2.330   67.3 0.0274

Table 6 Achieved results using the image Parrots

Method MAE MSE NCD
10% noise 7.526 882.0 0.0857

VMF 2.890   69.6 0.0142
BVDF 3.630 113.5 0.0127
DDF 2.839   69.7 0.0128

WVDF 2.362   77.2 0.0083
proposed method 1.831   62.6 0.0065

(a)              (b)             (c)

Figure 7. Estimation errors emphasized by factor 2.5 related to
the test image Lena degraded by 2% impulsive noise:

(a) VMF, (b) BVDF, (c) proposed method

Conclusion

We presented the directional sigmoidal optimization of the
weighted vector directional filters (WVDFs). The successful
adaptation of the WVDFs to varying image statistics was
proven by presented results. From these results it can be
seen that the proposed method clearly outperforming the
standard vector filters such as VMF, BVDF and DDF. The
proposed optimization is fast, saves the memory space and is
easy to implement. After the optimization, the proposed
WVDFs are sufficiently robust and useful for practical
image applications.
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